
Richard Gerber, Lisa Gerhardt, Harvey
Wasserman, Helen He, Scott French, Zhengji
Zhao

NUG Monthly
Meeting

-‐	 1	 -‐	

NUG	 Monthly	 Mee-ng	
September	 11,	 2014	

Agenda
•  Hopper	 and	 Edison	 U-liza-on,	 Backlog,	 and	 Queue	

Waits	
•  Edison	 memory	 replacement:	 down-me	

9/25/14-‐9/29/14	
•  Carver	 SL6	 OS	 upgrade	 and	 CHOS	
•  Hopper	 apsched	 errors	
•  Update	 on	 the	 NESAP	 program	 and	 NERSC	 Applica-on	

Readiness	 for	 Cori	 (NERSC-‐8)	
•  Dirac	 and	 Carver	 re-rement	 reminder	
•  NUGEX	 Elec-ons	
•  Mini-‐Seminar:	 Programming	 for	 high-‐level	 and	 fine-‐

grained	 parallelism	 with	 MPI,	 OpenMP,	 &	 UPC	

-‐	 2	 -‐	

Long Waits on Edison & Low Utilization on
Hopper

•  By	 late	 June	 Edison	 wait	 -mes	 had	 increased	
drama-cally	

•  At	 the	 same	 -me	 Hopper	 u-liza-on	 was	 “low”	 (s-ll	
close	 to	 80-‐90%!)	

•  NERSC	 took	 ac-on	 on	 August	 19	
–  Queue	 and	 run	 limits	 were	 relaxed	 on	 Hopper	
–  Hopper	 regular	 charge	 jobs	 were	 discounted	 20%.	
–  Run	 limit	 on	 Hopper	 low	 queue	 increased	 to	 48	 hours	

-‐	 3	 -‐	

Edison Backlog

-‐	 4	 -‐	

Edison Wait Times

-‐	 5	 -‐	

Hopper Utilization

-‐	 6	 -‐	

Edison Memory Replacement
and Outage"
Zhengji Zhao

-‐	 7	 -‐	

Edison Memory Replacement

•  REMINDER:	 Edison	 outage	 9/25/14	 to	 9/29/14	
•  We’re	 upgrading	 memory	 to	 support	 1866	 MHz	
memory	 clock	 speed	 (currently	 running	 at	 1600	
MHz)	

•  16.6%	 increase	 in	 memory	 bandwidth	 (streams)	
•  Will	 require	 another	 par-al	 outage	 in	 early	 2015,	 at	
which	 point	 the	 memory	 speed	 will	 be	 increased	 to	
1866	 MHz	

-‐	 8	 -‐	

SL6 and chos on Carver"
Lisa Gerhardt

Carver’s Current Status

-‐	 10	 -‐	

•  On	 Monday,	 August	 18th	 Carver’s	 base	 OS	 was	
upgraded	 from	 Scien-fic	 Linux	 5.5	 to	 Scien-fic	 Linux	
6.4	

•  Expanded	 to	 offer	 two	 user	 environments	
–  Users	 can	 choose	 which	 OS	 they	 want	
–  ScienJfic	 Linux	 5.5	 (same	 as	 before)	
–  ScienJfic	 Linux	 6.3	
–  Done	 using	 CHOS	

•  Carvergrid	 is	 s-ll	 on	 original	 OS,	 will	 be	 upgraded	 to	
SL6	 and	 CHOS	 soon	

What is CHOS?

-‐	 11	 -‐	

•  Sogware	 stack	 that	 allows	 support	 of	 many	
different	 OS’s	 simultaneously	

•  Can	 be	 thought	 of	 as	 essen-ally	 a	 chroot	 to	 an	
alternate	 OS	 (CHroot	 OS)	
–  File	 systems,	 batch	 integraJon	
–  Seamless	 to	 the	 user	

•  Successfully	 used	 on	 PDSF	 since	 2004	

Why go to CHOS?

-‐	 12	 -‐	

•  Allows	 us	 to	 offer	 newer	 sogware	 while	 s-ll	 suppor-ng	
older	 sogware	

•  Newest	 versions	 of	 some	 of	 our	 more	 popular	 sogware	
were	 not	 installable	 under	 SL5	
–  Matlab,	 IDL	

•  Greatly	 simplifies	 underlying	 architecture	 for	 system	
administra-on	
–  Can	 install	 soVware	 updates	 without	 perturbing	 user	 systems	
–  System	 soVware	 has	 a	 smaller	 memory	 footprint	 on	 the	
compute	 nodes	

–  For	 Carver,	 were	 able	 to	 update	 underlying	 OS	 to	 ScienJfic	 Linux	
6.4	

Interacting with CHOS

-‐	 13	 -‐	

•  Users	 are	 in	 CHOS	 from	 the	 beginning	 of	 a	 session	
–  ssh	 starts	 chos	 as	 part	 of	 logging	 in	

•  Your	 CHOS	 is	 determined	 by	 a	 “.chos-‐carver”	 file	 in	
your	 home	 directory	
–  Current	 default	 is	 SL5,	 “sl5carver”	 in	 .chos-‐carver	
–  SL	 6,	 “sl6carver”	
–  No	 .chos-‐carver	 file,	 get	 the	 default	 CHOS	

•  Use	 “chosenv”	 to	 see	 what	 CHOS	 you’re	 in	

This	 is	 a	
lower	 case	 L.	

Changing CHOS

-‐	 14	 -‐	

•  Users	 can	 change	 CHOS	 at	 will	
•  bash:	 	

export	 CHOS=sl6carver	
chos	
bash	 –l	

•  csh,	 tcsh	
setenv	 CHOS	 sl6carver	
chos	

•  For	 long	 term	 running,	 it’s	 recommend	 to	 put	
chosen	 CHOS	 in	 .chos-‐carver	 and	 get	 a	 fresh	 login	

Submitting Jobs with CHOS

-‐	 15	 -‐	

•  Your	 batch	 jobs	 will	 run	 in	 whatever	 CHOS	 you’re	 in	
when	 you	 submit	

•  Possible	 to	 run	 in	 another	 CHOS	
–  qsub	 -‐v	 CHOS=sl6carver	 <your_job.script>	
–  Add	 “#PBS	 -‐v	 CHOS=sl6carver”	 to	 top	 of	 job	 script	

Cron Jobs with CHOS

-‐	 16	 -‐	

•  If	 CHOS	 is	 not	 declared	 your	 cron	 jobs	 will	 run	 in	
minimalist	 base	 CHOS	
–  No	 modules,	 very	 limited	 soVware	 stack	
	
0	 */6	 *	 *	 *	 CHOS=sl6carver	 chos	 <your_cron>	

Carver CHOS Documentation

-‐	 17	 -‐	

hkp://www.nersc.gov/users/computa-onal-‐systems/
carver/user-‐environment/	

Future Plans

-‐	 18	 -‐	

•  Current	 default	 CHOS	 is	 sl5carver	 (same	 as	 before	 upgrade)	
–  Users	 who	 do	 nothing	 end	 up	 in	 this	 CHOS	

•  All	 new	 sogware	 installa-ons	 will	 be	 in	 sl6carver	
•  Tenta-ve	 plan	 is	 to	 change	 the	 default	 to	 sl6carver	 on	 9/22	

–  PRO:	 New	 users	 will	 automaJcally	 start	 in	 newer	 soVware,	
Encourages	 exisJng	 users	 to	 upgrade	 to	 new	 soVware	 (SL	 5	 is	
becoming	 less	 widely	 supported)	

–  CON:	 Users	 will	 have	 to	 take	 acJon,	 either	 recompile	 their	 code	 or	
adding	 a	 .chos-‐carver	 file	 to	 stay	 in	 SL	 5.5	

•  We	 would	 like	 NUG’s	 recommenda-on	 about	 whether	 to	
change	 the	 default	 to	 sl6carver	 (SL	 6.3)	

Hopper scheduler issues
placeholder

-‐	 19	 -‐	

NESAP & Application Readiness"
Harvey Wasserman

-‐	 20	 -‐	

NESAP Has Begun
•  Purpose:	 Get	 codes	 (more)	 ready	 for	 manycore	 systems	
•  Accelerate	 applica-on	 performance	
•  Produce	 science	 results	 on	 Cori	
•  Collabora-on	 between	 code	 groups,	 NERSC,	 and	 vendors	
•  Over	 50	 applica-on	 teams	 applied.	
•  Twenty	 teams	 accepted	 for	 collabora-on,	 early	 access,	 deep-‐dive	

consulta-on,	 early	 access	 to	 hardware	
•  About	 25	 more	 accepted	 for	 early	 access	 to	 hardware	
•  DOE	 program	 manager	 input	 and	 interest	 in	 results	

–  Many	 highly	 qualified	 teams	 not	 accepted	 at	 this	 level	

•  Accepted	 projects	 span	 science	 areas,	 representa-on	 in	 workload	
(NERSC/DOE/elsewhere),	 current	 readiness	 for	 manycore	 architecture	

•  See	 NERSC.gov	 -‐>	 News	 -‐>	 NERSC	 Center	 -‐>	 “NERSC	 Selects	 20	 NESAP	
Code	 Teams”	 	

20 NESAP Collaboration Codes

-‐	 22	 -‐	

NP	 (3)	
Maris	 (U.	 Iowa)	 –	 MFDn	 	
ab	 ini&o	 nuclear	 structure	
Joo	 (JLAB)	 –	 Chroma	 	
Lalce	 QCD	
Christ/Karsch	 (Columbia/
BNL)	 –	 DWF/HISQ	 	
Lalce	 QCD	
	

HEP	 (3)	
Vay	 (LBNL)	 –	 WARP	 &	 IMPACT-‐
accelerator	 modeling	
Toussaint	 (U	 Arizona)	 	 –	 MILC	
Lalce	 QCD	
Habib	 (ANL)	 –	 HACC	 for	
cosmology	

BES	 (5)	
Kent	 (ORNL)	 –	 Quantum	 Espresso	
Deslippe	 (NERSC)	 –	 BerkeleyGW	
Chelikowsky	 (UT)	 –	 PARSEC	 for	
excited	 state	 materials	
Bylaska	 (PNNL)	 –	 NWChem	
Newman	 (LBNL)	 –	 EMGeo	 for	
geophysical	 modeling	 of	 Earth	

BER	 (5)	
Smith	 (ORNL)	 –	 Gromacs	
Molecular	 Dynamics	
Yelick	 (LBNL)	 –	 Meraculous	
genomics	
Ringler	 (LANL)	 –	 MPAS-‐O	
global	 ocean	 modeling	
Johansen	 (LBNL)	 –	 ACME	
global	 climate	 	
Dennis	 (NCAR)	 –	 CESM	

	

	
ASCR	 (2)	

Almgren	 (LBNL)	 –	
BoxLib	 AMR	
Framework	 	
used	 in	 combusJon,	
astrophysics	
	
TreboJch	 (LBNL)	 –	
Chombo-‐crunch	 for	 	
subsurface	 flow	

	
FES	 (2)	

Jardin	 (PPPL)	 –	 M3D	
conJnuum	 plasma	
physics	
Chang	 (PPPL)	 	 –	 XGC1	
PIC	 plasma	

Carver and Dirac Retirement Reminders

•  Carver	 will	 be	 re-red	 on	 August	 31,	 2015	
–  TransiJon	 your	 code	 and	 workflows	 to	 Edison	
–  Tell	 us	 if	 you	 can’t	 run	 on	 Edison	 or	 Hopper	
–  Plans	 and	 advice:	
hsp://www.nersc.gov/users/computaJonal-‐systems/carver/reJrement-‐plans/	

•  Dirac	 will	 be	 re-red	 Friday,	 Dec.	 12,	 2014	
–  Queues	 will	 stay	 open	 to	 almost	 the	 end	 to	 allow	 shorter	
jobs	 to	 be	 run	 to	 the	 end.	

–  2014-‐12-‐12:	 Dirac	 power	 off	
•  10:00	 Queues	 disabled	
•  17:00	 System	 power	 off	

-‐	 23	 -‐	

NUGEX Elections

•  Eight	 seats	 on	 NUGEX	 are	 up	 for	 elec-on	 in	
December	 2014	 	
–  Fusion	 –	 2:	 Ethier,	 Vay	
–  High	 Energy	 Physics	 –	 3:	 Borrill,	 Goslieb,	 Tsung	
–  Nuclear	 Physics	 –	 2:	 Kasen,	 Savage	
–  At	 large	 –	 1:	 Newman	

•  Contact	 Frank	 Tsung	 (tsung@physics.ucla.edu)	 if	
you	 are	 interested	 in	 running	 for	 one	 of	 these	 spots.	

-‐	 24	 -‐	

Scott French"
NERSC User Services Group"
"
NUG Monthly Teleconference"
September 11, 2014

Evolution of
parallel
programming
models in a"
legacy scientific
application

Application: Global seismic tomography

•  Scien-fic	 goal:	 To	 beser	 understand	 the	 evoluJon	 and	 interior	
dynamics	 of	 our	 planet	 by	 imaging	 its	 deep	 structure	

•  Technique:	 Waveform	 tomography	
–  Objec-ve:	 Model	 of	 material	 properJes	
–  Observa-ons:	 Seismograms	 of	 natural	

earthquakes	 (hundreds)	
–  Predic-ons:	 Numerical	 simulaJons	 of	 	

seismic	 wave	 propagaJon	

•  Non-‐linear	 inverse	 problem	
–  PredicJon	 (spectral	 finite	 element)	 is	 expensive:	 500K	 –	 1M	 hours	

•  Itera-ve	 op-miza-on	 method	 should	 converge	 quickly	
–  Typically	 want	 ≤	 10	 iteraJons	 (two	 phases	 each:	 predicJon,	 assimilaJon)	
–  TradiJonally	 use	 a	 Gauss-‐Newton	 scheme	 in	 assimilaJon	 phase	

-‐	 26	 -‐	

1
0
0
0
 k

m

Deep

mantle

Ocean

nPPS

HawaiiMarquesas

Tahiti

Samoa

Pitcairn

Macdonald

Hotspot volcanic islands

North

Seismic shear-wave velocity

CFOFBUI�UIF�DFOUSBM�1BDJmD

low-velocity

mOHFST

low-velocity

plumes

French	 et	 al.,	 2013,	 Science	

Optimization via Gauss-Newton

•  Typical	 problem	 size:	 Nm	 =	 1e4	 –	 2e5	 earth-‐model	 parameters	
–  FactorizaJon	 of	 Gauss-‐Newton	 Hessian	 (Nm	 x	 Nm)	 feasible	 in	 this	 regime,	 avoids	

matrix-‐free	 (too	 many	 maps	 over	 data)	 or	 quasi-‐Newton	 (too	 many	 iteraJons)	

•  How	 to	 assemble	 the	 Gauss-‐Newton	 Hessian	 GTG?	
–  G:	 matrix	 of	 parJal	 derivaJves	 relaJng	 predicJons	 to	 the	 earth	 model	

•  Size:	 dimension	 of	 data	 (1e7)	 x	 number	 of	 parameters	 (Nm)	

–  Each	 datum	 (a	 seismogram)	 supplies	 one	 column-‐strided	 panel	 of	 G
–  Unfortunately,	 G	 is	 non-‐sparse	 and	 too	 large	 to	 form	 explicitly	

•  Solu-on:	 Form	 GTG	 directly	
–  Reduces	 storage	 requirements	

significantly	 over	 forming	 G
–  Repeated	 indexed	 augmented	 	

assignment	 (+=)	 into	 GTG

-‐	 27	 -‐	

+=

Never explicitly
formed

BLAS
GEMM

GtG[ix,ix] += GtG_i[:,:];

Pseudocode:

Fig. 1. A schematic illustration of the strided-slice update operation described
in the text.

Thus, the underlying computational kernel of our Jaco-
bian estimation reduces to a series of path integrations: one
integration for each choice of mode pair (k, k′) and source-
receiver path (corresponding to a single seismogram used in the
inversion). The overall cost scales as O

(

Nmr

√

Nmθφ
NSRf4

)

where Nmr and Nmθφ
correspond to the radial (depth) and

lateral (latitude-longitude) dimensions of m (i.e. the overall
dimension of m is Nm = NmrNmθφ

), NSR is the number of
source-receiver paths, and f is the maximum frequency con-
sidered in the wavefield (the number of coupling-mode pairs
(k, k′) grows as f4). A detailed review of mode perturbation
theory in waveform inversion may be found in [18].

2) Practical considerations: When considering realistically
large numbers of data Nd = dimd, where Nd ≫ Nm,
the Jacobian G is in general too large to form explicitly.
Instead, we form the Nm×Nm Hessian estimate GTG and the
(negative) misfit gradient vector GT [d− g(m)] directly (here,

we have absorbed C
−1/2
d

into G and d−g(m) for notational
convenience). Typically, for each datum i, corresponding to
a particular source-receiver path and recorded seismogram,
NACT (Section II-B1) yields a single column-strided panel
of G, denoted G(i). The particular striding pattern arises
from the application of the stationary phase approximation,
which limits the non-zero elements of G to model parameters
encountered along the source-receiver great circle, and thus
depends entirely on the source-receiver geometry. For each
datum i of size k (the number of time samples), G(i) is k×n,
where n is typically an order of magnitude smaller than Nm

(namely, n ∝ Nmr

√

Nmθφ
), while k varies independently

from n and is at least an order of magnitude smaller in practice.

Thus, for each i, there is an n × n symmetric update
GT

(i)G(i) that must be merged into the full GTG. The partic-
ular merge operation is simply addition – namely, the additive
“augmented assignment” operator += – and the mapping
between elements is given by a strided slicing operation; or,
in pseudocode: GtG[ix,ix] += GtG_i[:,:] where ix is a
suitable indexing array (Fig. 1). Updates to the misfit gradient
vector for the particular contribution from datum i follow a
similar pattern, though clearly only in one dimension.

3) Parallel implementation with replication: Each NACT
calculation, corresponding to one particular datum, is wholly
independent of every other. Thus, NACT-based Hessian and
gradient estimation is data-parallel and proceeds in two phases:
(1) a map operation over the waveform data d and correspond-

ing predictions from numerical simulations g(m), resulting
in per-datum Hessian and gradient contributions; and (2) a
parallel reduction operation, yielding a single estimate of
the full Hessian and gradient. Our particular implementation
adopts a mixed OpenMP/MPI programming model, appro-
priate for modern multi-core HPC platforms. In particular,
the outermost level of parallelism corresponds to MPI tasks,
typically distributed among the available compute resources
one-to-one with NUMA domains, with additional efforts to en-
sure strict memory containment and therefore enhance locality
when supported. All MPI tasks are equivalent (executing in a
SPMD fashion), with the exception that a designated root task
spawns a separate coordinator Pthread responsible for work
distribution (assigning data to the pool of MPI tasks).

Work is assigned to MPI tasks in blocks (more than one
datum) reflecting locality of the underlying data (observations
and simulation output) on disk. Each block is processed in
parallel by the OpenMP thread team associated with each
MPI task (one datum per thread) and occupying the remaining
available CPU cores. Up to the limit that the full Hessian
estimate can fit in memory, we adopt a replicated approach
to reduction of updates, motivated by the assumption that
the underlying merge operation (addition) can be considered
associative and commutative for our purposes (not strictly true
for floating-point arithmetic). Each MPI task maintains its own
copy of the Hessian and gradient, to which the OpenMP thread
team applies per-datum updates (protected by a mutex). Once
all blocks have been processed, the second level of reduction
proceeds by summing all replicated Hessian and gradient
copies across MPI tasks. Thereafter, the results are saved to
disk, either by a single root task or a collective write via MPI-
IO if large enough to warrant it (with collective buffering for
improved aggregate throughput on parallel filesystems).

C. Hybrid inversion in practice

1) Inversion setup and workflow: In our recent global-
scale imaging efforts [1], [2], the dataset is comprised of tens
of thousands of time-discretized seismograms recorded from
hundreds of earthquakes distributed around the globe, typically
yielding a d of dimension ∼ 107. The model m characterizes
3D variations of seismic shear-wave velocity in the earth’s
mantle, which is expressed in a spline basis of 104 − 105 free
parameters (see [1], [2] for parameterization details).

Given an iterative model estimate mi, we use a spectral
finite-element method to compute g(mi) – chosen for its
excellent numerical-dispersion behavior and natural treatment
of the free-surface boundary condition, among other attractive
properties [7], [9]. While small in isolation, each occupying
200-300 CPU cores under typical production configurations,
these spectral element simulations are numerous: requiring
an independent simulation for each earthquake and iterative
model estimate. This stands in contrast to the data assimilation
and Hessian computation described in Section II-B3, which is
cheap in comparison, is run only once per model iteration, and
scales trivially. As noted in Section II-A, the use of a quickly
converging Newton-like optimization scheme leads to a small
total number of iterations – typically ∼ 10 in practice. For
reference, the overall workflow for iterative optimization of m
is summarized in Fig. 2.

Index	 i	 is	 one	 datum	

Evolution of programming models

-‐	 28	 -‐	

more	
data	

	
higher	

resolu/on	

Late	 1990’s	 SequenJal	 soluJon	
Mid	 2000’s	 Parallelized,	 replicated	 Hessian	 esJmate	

•  MPI	 for	 work	 coordina&on	 and	 Hessian	 reduc&on	
2010	 One	 MPI	 process	 /	 Hessian	 per	 NUMA	 domain	

•  OpenMP	 threads	 compute	 per-‐waveform	 updates	
•  S&ll	 MPI	 for	 work	 coordina&on	 and	 Hessian	 reduc&on	

Late	 2013	 Hessian	 no	 longer	 fits	 on	 a	 single	 compute	 node	 …	

•  Requires	 a	 distributed	 solu-on:	 Must	 support	 assembly	 from	
concurrent	 updates	 with	 data-‐dependent	 indexed	 access	 paserns	

•  A	 number	 of	 simplifying	 assump/ons	 can	 be	 made	
–  Updates	 are	 independent	 (data	 parallel),	 commuta-ve,	 and	 associa-ve	
–  No	 loads	 /	 gets	 of	 distributed	 matrix	 elements	 during	 assembly	

•  State	 only	 needs	 to	 converge	 once	 all	 updates	 are	 “commised”	 	
•  ThereaVer,	 dependent	 computaJons	 can	 start	 (e.g.	 ScaLAPACK)	

Implementation: Goals and requirements

•  Many	 implementa-on	 strategies,	 a	 scalable	 solu-on	 should:	
–  Exploit	 simplifying	 assump-ons	
–  Overlap	 computaJon	 and	 communicaJon	
–  Minimize	 synchroniza-on	

•  Load	 balance	 is	 difficult	 to	 achieve	 –	 no	 bulk	 synchronous	 exchange	
•  No	 coordinaJon	 aside	 from	 dynamic	 work	 distribuJon	

•  Requirements	 for	 a	 distributed	 matrix	 abstrac-on	
–  Support	 for	 block-‐cyclic	 etc.	 distribuJons	 (ScaLAPACK,	 MPI-‐IO)	
–  Should	 fit	 seamlessly	 into	 the	 producJon	 applicaJon	

•  OpenMP	 and	 MPI	 interoperability	
•  >	 95%	 of	 applicaJon	 is	 in	 C,	 would	 prefer	 to	 stay	 in	 this	 language	 family	

–  Ensure	 isolaJon	 of	 concurrent	 +=	 updates,	 parameterized	 by	 indexed	 strided-‐
slicing	 operaJons:	 e.g.	 GtG[ix,ix]	 +=	 GtG_i[:,:];	

-‐	 29	 -‐	

Implementation: Design and interface

•  Solu-on	 adopts	 the	 Par--oned	 Global	 Address	 Space	 model	
–  MoJvated	 by	 fast	 non-‐blocking	 remote	 memory	 access	
–  Chose	 UPC++,	 a	 set	 of	 PGAS	 extensions	 to	 C++	 (Zheng,	 et	 al.	 IPDPS’14)	
–  Modeled	 largely	 on	 UPC	 (and	 others,	 e.g.	 X10),	 but	 adds:	

•  Dynamic	 remote	 memory	 management	 (allocate	 /	 free	 on	 remote	 target)	
•  Asynchronous	 remote	 task	 invoca&on	 (schedule	 code	 to	 run	 on	 remote	 target)	

–  Interoperable	 with	 MPI	 and	 OpenMP	 (usual	 caveats	 on	 mixing	 RTs)	

•  Distributed	 matrix	 abstrac-on:	 `ConvergentMatrix`	
–  In	 a	 nutshell,	 two-‐phase	 one-‐sided	 updates:	

•  Phase	 I:	 Buffer	 allocated	 on	 owner	 (target);	 +=	 r.h.s.	 data	 copied	 to	 target	
•  Phase	 II:	 Async	 task	 applies	 update	 on	 target	 in	 isolaJon	 (frees	 buffer)	

–  Simple	 interface:	 update	 ini&ates	 update,	 commit	 ensures	 comple&on	 of	 prior	
updates	 (collec&ve),	 and	 get_local_data	 returns	 ptr	 to	 local	 matrix	 data	

-‐	 30	 -‐	

Implementation: Design and interface

-‐	 31	 -‐	

local
storage

local
storage

OpenMP UPC++

NUMA domain

P
ro

ce
ss

 k

local
storage

ConvergentMatrix<float,...> GtG(M, M);
...
// for each locally computed update
GtG.update(GtG_i, slice_idx_i);Jacobian

panels
Internal binning, upcxx::copy and upcxx::async invocation

OpenMP UPC++

NUMA domain

P
ro

ce
ss

 0

Jacobian
panels

OpenMP UPC++

NUMA domain

P
ro

ce
ss

 N

Jacobian
panels

GtG.commit(); // barrier
// fetch local pointer
float *mat = GtG.get_local_data();
// ScaLAPACK
// MPI-IO collective write

Hessian
update

Binned
updates

async executes update async executes update

Manages
matrix

abstraction

Perform
NACT

computation

Eventually on all UPC++ processes ...

Process invoking update()

Fig. 3. A schematic illustration of how the ConvergentMatrix abstraction is used in our production application, focused on the path taken by a single
Hessian update and highlighting the roles of different coexisting parallel programming models / tools (UPC++, OpenMP, and MPI).

C. Challenges

Here, we discuss two challenges that arose during the
development and deployment of ConvergentMatrix, along
with the particular solutions we adopted.

1) Reasoning about progress: One of the more fundamen-
tal challenges encountered in developing ConvergentMatrix

is reasoning about progress: in terms of both execution of the
asynchronous update tasks and remote memory management.

Execution of asynchronous tasks
As noted above, asynchronous task invocation and remote
memory management operations in UPC++ both require GAS-
Net to poll the network for new messages on the target side and
execute the associated AM handlers. While GASNet implicitly
calls gasnet_AMPoll (which services the network, trigger-
ing the associated handlers) in numerous message-sending
operations [21], reasoning about where, when, and if at all,
additional calls to gasnet_AMPoll are necessary is non-trivial
(in addition to the limited number thereof internal to UPC++).
Indeed, GASNet is specifically designed for such operations
to occur at the implementation level of the supported PGAS
language, not at the application programmer level.

Further, even when AM handlers for asynchronous tasks
are run on the destination process, UPC++ only enqueues
these tasks to run. As described above in Section III-B2, each
participating process must periodically ensure that update tasks
enqueued by remote processes are executed. Initially, there was
no support in UPC++ for querying or draining the local task
queue: only upcxx::progress, which calls gasnet_AMPoll
and subsequently executes a single task from the queue. This
functionality was added to UPC++ as part of the development
of ConvergentMatrix and has subsequently been merged
into the former as the peek and drain functions.

Implications for memory management
Pausing to make progress on the enqueued update tasks
has additional implications for memory overhead, as the
update tasks are responsible for freeing their own yet-to-
be-applied update data (see Section III-B3). Failure to pe-
riodically free these buffers can lead to runtime failures on

calls to upcxx::allocate due to memory exhaustion on
the target process. One potential solution would be the ad-
dition of a backpressure mechanism: for example, whereby
upcxx::allocate would be permitted to return a failure
code, indicating that it should be retried later on. During the
pause, the calling process could spin in upcxx::progress to
ensure execution of AM handlers and enqueued tasks, though
this may not be necessary to ensure progress if other measure
are taken (see Aiding progress). This functionality (failure in
upcxx::allocate without aborting execution) has not been
introduced into UPC++, but could easily be in the future.

Aiding progress
We explored two approaches for mitigating the issues raised
above. The first approach is simply to set the interval be-
tween upcxx::drain calls internal to the update method
to one (described in Section III-B2), requiring that every
round of asynchronous update tasks is accompanied by a call
to upcxx::drain on the initiating side. Assuming approx-
imate load-balance between ConvergentMatrix instances,
this should ensure that progress is made on enqueued tasks
(and AM handlers) at roughly the same rate they are initiated.

However, this assumption is at odds with the asynchronous
design of the abstraction, as well as numerous real-world
considerations (imperfect load balance, non-determinism in
IO rates, etc.). Though additional upcxx::drain calls may
be invoked while a UPC++ process waits for new Hessian
updates from the OpenMP thread team, there are numerous
other operations where such calls cannot easily be interleaved.
To this end, we introduced an additional “progress” thread,
responsible for periodically invoking upcxx::drain. While
this solution requires locks to prevent concurrent calls to
UPC++ routines that alter the task queue, this critical section of
calls within the update method is compact, and the additional
code complexity is minimal (less than 30 SLOC). We found
this approach to be effective at ensuring progress despite the
asynchronous nature of update operations, thereby enabling
both high update throughput (rapid execution of update tasks)
and efficient memory management (requiring a smaller re-
served fast segment for GASNet, as well as less chance of

•  Example	 follows	 the	 path	 of	 a	 single	 matrix	 update	
•  ConfiguraJon:	 One	 process	 per	 NUMA	 domain,	 but	 now	 UPC++	

An	 illustra-ve	 example	

•  Approach:	 Abstract	 away	 applica-on	
–  Test	 framework	 generates	 syntheJc	 updates:	 RealisJc	 Hessian	 sizes	 (up	 to	

next-‐gen	 ≥2.5TB),	 access-‐paserns,	 update	 rates,	 concurrency	 levels	

Evaluation: Strong scaling

-‐	 32	 -‐	

(A) (B) (C)

R
e

la
ti

v
e

 P
a

ra
ll

e
l

E
ffi

ci
e

n
cy

 (
%

)

N
m

 = 1.1e5
N

m
 = 2.2e5

N
m

 = 8.2e5

4 16 64 254 1024

NUMA Domains

95

90

85

80

75

100

16 64 254 1024

NUMA Domains (64 updates each)

UPC++
MPI-3 RMA

T
im

e
 t

o
 s

o
lu

ti
o

n
 (

s)

4e3

3e3

2e3

1e3

0
16 64 254 1024

NUMA Domains (64 updates each)

other

binning
upcxx::allocate
upcxx::copy

250

200

150

100

50

0

T
im

e
 in

 c
m

::
u

p
d

a
te

 (
s)

Fig. 4. Strong (A) and weak (B) scaling results for the test runs discussed in the text. The UPC++ line in (B) is flat due to near-total overlap of computation
and communication. Per-process aggregate walltime breakdowns (C) for the 64 update calls in (B), focusing on the three major internal operations (binning,
remote allocation, and copying).

access patterns (indexing into the distributed Hessian), and pro-
duction rates. As noted above (Section III-C2), we configure
the framework to produce updates at a nearly uniform rate, thus
inducing the worst case simultaneous communication volume
and placing a lower-bound on performance (namely, we use
the mean measured rate for each problem size considered).

These benchmarks are performed on Edison, a Cray XC30
at the Department of Energy National Energy Research Scien-
tific Computing Center and our primary production platform.
Each Edison compute node has 64 GB of memory among two
NUMA domains, each associated with a 12-core Intel “Ivy
Bridge” processor. There are 5,576 compute nodes in total,
linked via a Cray Aries high-speed interconnect, yielding a
theoretical peak performance of 2.57 PFLOPS. In all of our
scaling experiments, we mimic the distribution of processes /
threads seen in the production application: one UPC++ process
(and ConvergentMatrix instance) per NUMA domain and
8 OpenMP threads performing simulated work (in practice
the remaining cores perform separate work distribution or IO
tasks). Similar to our production application, we use the GNU
Compilers (4.8.2) in all of our tests (optimization: -O3). We
store all matrix data in 32-bit float, again mimicking the
production application (limited by the precision of the seismic
data, stored as float for compact representation on disk).

1) Strong Scaling: We examine three fixed problem sizes:
two borrowed from recent inversions (Nm = 1.1 × 105 and
2.2 × 105) and one from a planned next-generation inversion
(Nm = 8.2×105) motivated by doubling the lateral resolution
of the former two. These runs are configured to use a 2D block-
cyclic distribution scheme (64× 64 block size), occupying P
UPC++ processes (ConvergentMatrix instances associated
with NUMA domains) for

√
P ∈ {2, 4, 8, 16, 32}, and are

representative of production calculations on up 1024 NUMA
domains, or 12,288 cores, of Edison. We quantify strong
scaling in terms of relative parallel efficiency:

ER(P) =
T (Pmin) · Pmin

T (P) · P
where T (P) is the time to solution using P processes (elapsed
time from thread-team start to when commit() returns) and
Pmin corresponds to the reference run: the smallest P in the
set above at which the problem size considered can be solved
(due to memory limitations). We hold the total number of
updates Nup initiated across all processes fixed at a range

TABLE I. STRONG SCALING FOR A RANGE OF Nm ON UP TO 12,288
CORES OF A CRAY XC30. GREEN VALUES: EXTRAPOLATED WITH

R(P = 64) = 7.88; BLUE VALUES: R(P = 64) = 7.80 (SEE TEXT).

Nm = 1.1 × 105

P Cores Nup T (P) s ER(P) Nup T (P) s ER(P)
4 48 4096 5070.59 100.0% 32768 39948.20 100.0%

16 192 4096 1271.40 99.7% 32768 10016.61 99.7%
64 768 4096 322.24 98.3% 32768 2538.74 98.3%

256 3072 - - - 32768 640.96 97.4%
1024 12288 - - - 32768 171.68 90.9%

Nm = 2.2 × 105

P Cores Nup T (P) s ER(P) Nup T (P) s ER(P)
16 192 4096 2318.57 100.0% 32768 18079.84 100.0%
64 768 4096 592.80 97.8% 32768 4622.56 97.8%

256 3072 - - - 32768 1173.27 96.3%
1024 12288 - - - 32768 321.92 87.7%

Nm = 8.2 × 105

P Cores Nup T (P) s ER(P) Nup T (P) s ER(P)
256 3072 32768 2399.96 100.0% 16 65536 4703.16 100.0%

1024 12288 32768 703.72 85.3% 32 65536 1279.66 91.9%

of values Nup ∈ {4096, 32768, 65536}, reflecting present-day
and anticipated future inversions and allowing us to measure
relative efficiencies across three orders of magnitude in core
counts by extrapolation. Namely, T scales quasi-linearly with
the number of updates initiated by each process, which allows
us, for example, to infer T (P = 4, Nup = 32768) from
Nup = 4096 (the former takes prohibitively long to measure).

To elaborate, our application is partially pipelined: the
thread team produces updates in parallel, which are buffered
and consumed by ConvergentMatrix for application. There
is a non-zero spin-up time at the beginning of each run while
the thread team is working but has not yet produced work
for ConvergentMatrix. For small P and fixed Nup (many
updates per instance), the fraction of T spent in spin-up will be
smaller than for larger P (fewer updates per instance). For ex-
ample, the T (P,Nup) ratio R(P) = T (P, 32768)/T (P, 4096)
will be approximately 8 for P = 4, but less for P = 64 (due
to the larger spin-up fraction). Here, we can use R(P = 64)
to extrapolate a lower bound on T (4, 32768) from T (4, 4096),
which may in turn be used as the reference run to establish a
lower bound on ER(P) for larger P and Nup.

In Table I and Fig. 4A, we show T and ER(P) for the
test runs described above. For all Nm and P considered, we
observe impressive relative speedup and find that ER(P) re-
mains consistently above 85% – indicative of nearly complete

ER(P) =
T (P0)

P/P0 · T (P)

•  GNU	 Compilers	 4.8.2	 (-‐O3)	
•  GASNet-‐1.22	 /	 UPC++	 master	

In	 terms	 of	 rela-ve	
parallel	 efficiency:	

(A) (B) (C)
R

e
la

ti
v

e
 P

a
ra

ll
e

l
E

ffi
ci

e
n

cy
 (

%
)

N
m

 = 1.1e5
N

m
 = 2.2e5

N
m

 = 8.2e5

4 16 64 254 1024

NUMA Domains

95

90

85

80

75

100

16 64 254 1024

NUMA Domains (64 updates each)

UPC++
MPI-3 RMA

T
im

e
 t

o
 s

o
lu

ti
o

n
 (

s)

4e3

3e3

2e3

1e3

0
16 64 254 1024

NUMA Domains (64 updates each)

other

binning
upcxx::allocate
upcxx::copy

250

200

150

100

50

0

T
im

e
 in

 c
m

::
u

p
d

a
te

 (
s)

Fig. 4. Strong (A) and weak (B) scaling results for the test runs discussed in the text. The UPC++ line in (B) is flat due to near-total overlap of computation
and communication. Per-process aggregate walltime breakdowns (C) for the 64 update calls in (B), focusing on the three major internal operations (binning,
remote allocation, and copying).

access patterns (indexing into the distributed Hessian), and pro-
duction rates. As noted above (Section III-C2), we configure
the framework to produce updates at a nearly uniform rate, thus
inducing the worst case simultaneous communication volume
and placing a lower-bound on performance (namely, we use
the mean measured rate for each problem size considered).

These benchmarks are performed on Edison, a Cray XC30
at the Department of Energy National Energy Research Scien-
tific Computing Center and our primary production platform.
Each Edison compute node has 64 GB of memory among two
NUMA domains, each associated with a 12-core Intel “Ivy
Bridge” processor. There are 5,576 compute nodes in total,
linked via a Cray Aries high-speed interconnect, yielding a
theoretical peak performance of 2.57 PFLOPS. In all of our
scaling experiments, we mimic the distribution of processes /
threads seen in the production application: one UPC++ process
(and ConvergentMatrix instance) per NUMA domain and
8 OpenMP threads performing simulated work (in practice
the remaining cores perform separate work distribution or IO
tasks). Similar to our production application, we use the GNU
Compilers (4.8.2) in all of our tests (optimization: -O3). We
store all matrix data in 32-bit float, again mimicking the
production application (limited by the precision of the seismic
data, stored as float for compact representation on disk).

1) Strong Scaling: We examine three fixed problem sizes:
two borrowed from recent inversions (Nm = 1.1 × 105 and
2.2 × 105) and one from a planned next-generation inversion
(Nm = 8.2×105) motivated by doubling the lateral resolution
of the former two. These runs are configured to use a 2D block-
cyclic distribution scheme (64× 64 block size), occupying P
UPC++ processes (ConvergentMatrix instances associated
with NUMA domains) for

√
P ∈ {2, 4, 8, 16, 32}, and are

representative of production calculations on up 1024 NUMA
domains, or 12,288 cores, of Edison. We quantify strong
scaling in terms of relative parallel efficiency:

ER(P) =
T (Pmin) · Pmin

T (P) · P
where T (P) is the time to solution using P processes (elapsed
time from thread-team start to when commit() returns) and
Pmin corresponds to the reference run: the smallest P in the
set above at which the problem size considered can be solved
(due to memory limitations). We hold the total number of
updates Nup initiated across all processes fixed at a range

TABLE I. STRONG SCALING FOR A RANGE OF Nm ON UP TO 12,288
CORES OF A CRAY XC30. GREEN VALUES: EXTRAPOLATED WITH

R(P = 64) = 7.88; BLUE VALUES: R(P = 64) = 7.80 (SEE TEXT).

Nm = 1.1 × 105

P Cores Nup T (P) s ER(P) Nup T (P) s ER(P)
4 48 4096 5070.59 100.0% 32768 39948.20 100.0%

16 192 4096 1271.40 99.7% 32768 10016.61 99.7%
64 768 4096 322.24 98.3% 32768 2538.74 98.3%

256 3072 - - - 32768 640.96 97.4%
1024 12288 - - - 32768 171.68 90.9%

Nm = 2.2 × 105

P Cores Nup T (P) s ER(P) Nup T (P) s ER(P)
16 192 4096 2318.57 100.0% 32768 18079.84 100.0%
64 768 4096 592.80 97.8% 32768 4622.56 97.8%

256 3072 - - - 32768 1173.27 96.3%
1024 12288 - - - 32768 321.92 87.7%

Nm = 8.2 × 105

P Cores Nup T (P) s ER(P) Nup T (P) s ER(P)
256 3072 32768 2399.96 100.0% 16 65536 4703.16 100.0%

1024 12288 32768 703.72 85.3% 32 65536 1279.66 91.9%

of values Nup ∈ {4096, 32768, 65536}, reflecting present-day
and anticipated future inversions and allowing us to measure
relative efficiencies across three orders of magnitude in core
counts by extrapolation. Namely, T scales quasi-linearly with
the number of updates initiated by each process, which allows
us, for example, to infer T (P = 4, Nup = 32768) from
Nup = 4096 (the former takes prohibitively long to measure).

To elaborate, our application is partially pipelined: the
thread team produces updates in parallel, which are buffered
and consumed by ConvergentMatrix for application. There
is a non-zero spin-up time at the beginning of each run while
the thread team is working but has not yet produced work
for ConvergentMatrix. For small P and fixed Nup (many
updates per instance), the fraction of T spent in spin-up will be
smaller than for larger P (fewer updates per instance). For ex-
ample, the T (P,Nup) ratio R(P) = T (P, 32768)/T (P, 4096)
will be approximately 8 for P = 4, but less for P = 64 (due
to the larger spin-up fraction). Here, we can use R(P = 64)
to extrapolate a lower bound on T (4, 32768) from T (4, 4096),
which may in turn be used as the reference run to establish a
lower bound on ER(P) for larger P and Nup.

In Table I and Fig. 4A, we show T and ER(P) for the
test runs described above. For all Nm and P considered, we
observe impressive relative speedup and find that ER(P) re-
mains consistently above 85% – indicative of nearly complete

Strong	 Scaling	 (Edison)	

Alternative implementation: MPI-3 RMA

-‐	 33	 -‐	

•  Func-onal	 requirements	 met	 with	 MPI-‐3	 RMA	 (similar	 #	 SLOC)	
–  MPI_Accumulate	 +	 MPI_SUM	 and	 passive	 MPI_Win_lock	 /	 unlock	

•  Pro:	 UPC++	 /	 GASNet	 RTs	 not	 needed	
•  Pro:	 Elemental	 atomicity:	 MPI	 RT	 has	
more	 freedom	 in	 scheduling	 updates?	

•  Con:	 Elemental	 atomicity:	 Element-‐	
wise	 concurrency	 control?	

•  Con:	 Black	 box:	 Design	 tradeoffs	 sub-‐	
op&mal	 for	 our	 use	 case?	 (e.g.	 locality	
implica&ons	 of	 true	 passive	 target)	

•  Right:	 weak	 scaling	 (dataset	 size)	
–  64	 updates	 /	 NUMA	 domain	
–  Matrix	 size	 held	 fixed:	 Nm	 =	 2.2e5	 	

(A) (B) (C)

R
e

la
ti

v
e

 P
a

ra
ll

e
l

E
ffi

ci
e

n
cy

 (
%

)

N
m

 = 1.1e5
N

m
 = 2.2e5

N
m

 = 8.2e5

4 16 64 254 1024

NUMA Domains

95

90

85

80

75

100

16 64 254 1024

NUMA Domains (64 updates each)

UPC++
MPI-3 RMA

T
im

e
 t

o
 s

o
lu

ti
o

n
 (

s)

4e3

3e3

2e3

1e3

0
16 64 254 1024

NUMA Domains (64 updates each)

other

binning
upcxx::allocate
upcxx::copy

250

200

150

100

50

0

T
im

e
 in

 c
m

::
u

p
d

a
te

 (
s)

Fig. 4. Strong (A) and weak (B) scaling results for the test runs discussed in the text. The UPC++ line in (B) is flat due to near-total overlap of computation
and communication. Per-process aggregate walltime breakdowns (C) for the 64 update calls in (B), focusing on the three major internal operations (binning,
remote allocation, and copying).

access patterns (indexing into the distributed Hessian), and pro-
duction rates. As noted above (Section III-C2), we configure
the framework to produce updates at a nearly uniform rate, thus
inducing the worst case simultaneous communication volume
and placing a lower-bound on performance (namely, we use
the mean measured rate for each problem size considered).

These benchmarks are performed on Edison, a Cray XC30
at the Department of Energy National Energy Research Scien-
tific Computing Center and our primary production platform.
Each Edison compute node has 64 GB of memory among two
NUMA domains, each associated with a 12-core Intel “Ivy
Bridge” processor. There are 5,576 compute nodes in total,
linked via a Cray Aries high-speed interconnect, yielding a
theoretical peak performance of 2.57 PFLOPS. In all of our
scaling experiments, we mimic the distribution of processes /
threads seen in the production application: one UPC++ process
(and ConvergentMatrix instance) per NUMA domain and
8 OpenMP threads performing simulated work (in practice
the remaining cores perform separate work distribution or IO
tasks). Similar to our production application, we use the GNU
Compilers (4.8.2) in all of our tests (optimization: -O3). We
store all matrix data in 32-bit float, again mimicking the
production application (limited by the precision of the seismic
data, stored as float for compact representation on disk).

1) Strong Scaling: We examine three fixed problem sizes:
two borrowed from recent inversions (Nm = 1.1 × 105 and
2.2 × 105) and one from a planned next-generation inversion
(Nm = 8.2×105) motivated by doubling the lateral resolution
of the former two. These runs are configured to use a 2D block-
cyclic distribution scheme (64× 64 block size), occupying P
UPC++ processes (ConvergentMatrix instances associated
with NUMA domains) for

√
P ∈ {2, 4, 8, 16, 32}, and are

representative of production calculations on up 1024 NUMA
domains, or 12,288 cores, of Edison. We quantify strong
scaling in terms of relative parallel efficiency:

ER(P) =
T (Pmin) · Pmin

T (P) · P
where T (P) is the time to solution using P processes (elapsed
time from thread-team start to when commit() returns) and
Pmin corresponds to the reference run: the smallest P in the
set above at which the problem size considered can be solved
(due to memory limitations). We hold the total number of
updates Nup initiated across all processes fixed at a range

TABLE I. STRONG SCALING FOR A RANGE OF Nm ON UP TO 12,288
CORES OF A CRAY XC30. GREEN VALUES: EXTRAPOLATED WITH

R(P = 64) = 7.88; BLUE VALUES: R(P = 64) = 7.80 (SEE TEXT).

Nm = 1.1 × 105

P Cores Nup T (P) s ER(P) Nup T (P) s ER(P)
4 48 4096 5070.59 100.0% 32768 39948.20 100.0%

16 192 4096 1271.40 99.7% 32768 10016.61 99.7%
64 768 4096 322.24 98.3% 32768 2538.74 98.3%

256 3072 - - - 32768 640.96 97.4%
1024 12288 - - - 32768 171.68 90.9%

Nm = 2.2 × 105

P Cores Nup T (P) s ER(P) Nup T (P) s ER(P)
16 192 4096 2318.57 100.0% 32768 18079.84 100.0%
64 768 4096 592.80 97.8% 32768 4622.56 97.8%

256 3072 - - - 32768 1173.27 96.3%
1024 12288 - - - 32768 321.92 87.7%

Nm = 8.2 × 105

P Cores Nup T (P) s ER(P) Nup T (P) s ER(P)
256 3072 32768 2399.96 100.0% 16 65536 4703.16 100.0%

1024 12288 32768 703.72 85.3% 32 65536 1279.66 91.9%

of values Nup ∈ {4096, 32768, 65536}, reflecting present-day
and anticipated future inversions and allowing us to measure
relative efficiencies across three orders of magnitude in core
counts by extrapolation. Namely, T scales quasi-linearly with
the number of updates initiated by each process, which allows
us, for example, to infer T (P = 4, Nup = 32768) from
Nup = 4096 (the former takes prohibitively long to measure).

To elaborate, our application is partially pipelined: the
thread team produces updates in parallel, which are buffered
and consumed by ConvergentMatrix for application. There
is a non-zero spin-up time at the beginning of each run while
the thread team is working but has not yet produced work
for ConvergentMatrix. For small P and fixed Nup (many
updates per instance), the fraction of T spent in spin-up will be
smaller than for larger P (fewer updates per instance). For ex-
ample, the T (P,Nup) ratio R(P) = T (P, 32768)/T (P, 4096)
will be approximately 8 for P = 4, but less for P = 64 (due
to the larger spin-up fraction). Here, we can use R(P = 64)
to extrapolate a lower bound on T (4, 32768) from T (4, 4096),
which may in turn be used as the reference run to establish a
lower bound on ER(P) for larger P and Nup.

In Table I and Fig. 4A, we show T and ER(P) for the
test runs described above. For all Nm and P considered, we
observe impressive relative speedup and find that ER(P) re-
mains consistently above 85% – indicative of nearly complete

Weak	 Scaling	 (Edison)	

TABLE II. WEAK SCALING FOR Nm = 2.2× 105 ON UP TO 12,288
CORES OF A CRAY XC30: UPC++ AND MPI-BASED IMPLEMENTATIONS.

UPC++ MPI

P Cores Nup T (P) s T (P) s
16 192 1024 591.18 fail
64 768 4096 592.50 1452.24

256 3072 16384 597.24 1620.22
1024 12288 65536 609.96 3560.28

overlap of computation and communication. In our application,
Nm is constrained a priori by the physics of wave propagation
(namely, the attainable resolution) and held fixed for multiple
inversion iterations. Thus, strong scaling is a critically impor-
tant axis of evaluation for our application. Further, these tests
clearly demonstrate that ConvergentMatrix readily scales to
anticipated next-generation problem sizes.

2) Weak scaling: For our application, it is difficult to define
a meaningful notion of weak scaling, tied to a nominal fixed
problem size per process while scaling global problem size
by enlarging the number of processes. Two natural axes along
which to scale global problem size are matrix dimension Nm

and total quantity of data Nup. Growing Nm while retaining a
fixed-size partition of the distributed matrix per process does
not retain a fixed per-process problem size, as the dimension of
each update must grow accordingly (Section II-B2). Holding
Nm fixed while scaling Nup (adding processes, each perform-
ing a fixed number of updates), does not maintain the same
matrix partition size per process, but does maintain the same
update dimension and per-update communication volume.

Among these two options, we believe the second (scaling
Nup) may be more informative. Importantly, though the per-
update problem size is fixed, the total volume of concurrent
communication increases with P , as does the cost of the
binning / flushing operation. Further, unlike the fixed total
Nup runs used in assessing strong scaling, these experiments
are comparatively insensitive to the effect of spin-up time
fraction (which is the same for all P). Thus, variation in
T observed in these runs is primarily due to communication
overhead inherent to our implementation, therefore yielding
a more informative notion of problem size for evaluating the
communication model. In Table II and Fig. 4B, we show weak
scaling for an Nm of 2.2×105 in terms of time to solution T ,
for a range of P and fixed number of updates per-process (64).
We find that T stays nearly constant over a wide range of core-
(192–12288) and corresponding update-counts (1024–65535),
gaining only 3% at the largest P (and problem size), indicative
of near-total overlap of computation and communication. This
is confirmed when we examine Fig. 4C, showing per-process
aggregate time breakdowns for calls to the update method:
the totals are considerably below computation time for the test
case considered (64 updates will be computed by the OpenMP
threads in ∼ 570 s for this Nm). Further, increases in aggregate
update time are mostly driven by matrix-element binning, not
the UPC++ update-movement operations.

B. Comparison with MPI-3 one-sided

For comparison, we designed a second implementation,
based on MPI-3 one-sided remote memory access (RMA)
operations. While the shortcomings of MPI-2 for emulat-
ing PGAS-like functionality are well known [24], MPI-3
largely addresses these issues. The particular semantics of

MPI_Accumulate fit well with our requirements: concurrent,
element-wise atomic updates to remote memory using prede-
fined commutative merge operations (e.g. MPI_SUM). These are
weaker atomicity guarantees than the UPC++ version (which
applies the entire update atomically), that we hoped could lead
to performance advantages when using MPI-3 RMA.

In our re-implementation of ConvergentMatrix, we use
per-target MPI window objects, allowing fine control over
access epochs for distributed-matrix storage arrays. Access is
managed with the passive MPI_Win_lock / unlock pattern,
requiring minimal synchronization and no target-side exposure
management. Locks are acquired for each accumulate call in
exclusive mode, after initial tests found performance advan-
tages over shared locks, possibly due to implicit coordination
between concurrent updates and poor locally when updates
from distinct origins are interleaved. We also tried a single
passive access epoch with shared-mode locks, i.e. opened by
the first update call and closed by commit, in conjunction
with per-accumulate MPI_Win_flush_local calls, but again
found performance poorer than the exclusive-lock approach.
Finally, because individual binned updates are arbitrarily struc-
tured, we define per-update MPI indexed derived types.

As noted in Section IV-A2, our weak-scaling tests are par-
ticularly sensitive to the volume of concurrent communication,
and thus provide a useful framework for assessing different
communication models. We repeated these tests for the MPI-
based implementation, using the same compiler configuration
and Cray MPT 6.2.0 (based on MPI-3 compliant MPICH
3.0.3). These partial results are shown in Table II and Fig. 4B.
Namely, the use of a 32-bit int for window offsets (indexing),
defined in the MPI standard, severely limits window size and
places a lower bound on P for a given Nm (here, the P = 16
case leads to overflow). This is not a problem for the UPC++
implementation, as element indices may be parameterized in
any integer type (default: 64-bit). In general, we find that time
to solution is larger than that seen for UPC++ and weak scaling
is comparatively poor, with 11% performance degradation
between the P = 64 and 256 cases, and further degradation to
145% of the P = 64 case by P = 1024. It is clear that there
are both functionality and scalability / performance advantages
to the UPC++-based implementation.

We further believe that there is little advantage to choosing
MPI from a programmer productivity perspective. In terms of
code complexity, UPC++ and MPI require analogous initial-
ization steps (exchanging upcxx::global_ptr references vs.
collective window creation), and similar quantites of code are
needed to implement updates with upcxx::async vs. MPI
RMA (92 and 75 SLOC, respectively). While UPC++ required
additional care in reasoning about progress (Section III-C), it
was considerably simpler to reason about performance (relative
to MPI, where details critical to debugging comparatively poor
performance are hidden in the runtime). Indeed, examining
the MPI_Accumulate implementation in foMPI [25], a highly
optimized RDMA-aware MPI-3 implementation, the style of
bulk floating-point accumulate that we require involves multi-
ple phases of data-movement (target-window lock, RDMA-get,
origin-side accumulate, RMDA-put, unlock), in contrast to our
single phase. Further, this limitation has its roots in design of
the API itself, which encourages a truly passive target (e.g.
avoiding extensive target-side buffering in the runtime, which

**	 Overflow	 in	 MPI_Type_Indexed	

•  GNU	 Compilers	 4.8.2	 (-‐O3)	
•  Cray	 MPI	 6.2.0	 (MPI-‐3)	

Discussion and Conclusions

-‐	 34	 -‐	

•  PGAS-‐based	 solu-on	 enables	 us	 to	 solve	 problems	 we	 could	 not	
have	 akempted	 otherwise	
–  Yielded	 the	 first-‐ever	 seismic	 model	 Earth’s	 mantle	 obtained	 using	 SEM-‐based	

waveform	 tomography	 (French	 and	 Romanowicz,	 2014,	 GJI	 accepted)	
–  Ready	 to	 scale	 to	 the	 next	 generaJon	 of	 problem	 size	

•  Broader	 implica-ons	 for	 HPC	
–  IllustraJve	 example:	 Progressive	 adop/on	 of	 mixed-‐model	 parallelism	 to	

confront	 /	 exploit	 architectural	 changes	 and	 adapt	 to	 changing	 scienJfic	 goals	
•  {MPI}	 	 ⇾	 	 {MPI	 +	 OpenMP}	 	 ⇾	 	 {MPI	 +	 OpenMP	 +	 PGAS}	

–  ApplicaJon	 fits	 into	 an	 increasingly	 common	 mo/f:	 Data-‐driven	 concurrent	
computaJons	 that	 update	 shared	 global	 state	 with	 complex	 access	 paserns	

–  UPC++	 feature-‐set	 enables	 novel	 solu/ons	 to	 such	 problems	 and	 an	 provides	
an	 easy	 onramp	 to	 adop/on	 of	 the	 PGAS	 model	
•  Familiar	 /	 popular	 language	 (C++),	 interoperability	 with	 MPI	 and	 OpenMP,	 etc.	

Extra Slides

-‐	 35	 -‐	

Challenges: Ensuring progress

-‐	 36	 -‐	

•  Progress	 in	 the	 asynchronous	 task	 queue	
–  When	 are	 asynchronous	 tasks	 actually	 executed?	

•  ImplicaJons	 for	 memory	 management:	 When	 will	 the	 receive	 buffers	 be	 freed?	
–  SoluJons	 for	 finer	 control	 over	 task	 queue:	

•  peek()	 /	 drain()	 for	 querying	 /	 flushing	 the	 queue	
•  Progress	 thread:	 runs	 in	 the	 background,	 execuJng	 remotely	 enqueued	 tasks	

•  Progress	 in	 GASNet	
–  GASNet	 AcJve	 Messages	 handlers	 required	 for:	 (a)	 tasks	 to	 enter	 queue	 on	

target	 and	 (b)	 remote	 memory	 allocaJon	 on	 target	 (not	 for	 copy)	
•  AM	 polling	 within	 UPC++	 (and	 implicitly	 within	 GASNet	 ops)	

–  Progress	 thread	 assists	 GASNet	 progress	 (peek()	 induces	 polling)	
•  Poten-al	 for	 deadlock	

–  CommunicaJons	 operaJons	 separate	 across	 runJmes	
•  Separate	 in	 &me	 or	 concurrent	 but	 handled	 by	 different	 threads	

–  Low	 probability	 of	 classic	 deadlock	 problem	 when	 mixing	 parallel	 RTs	

More on MPI implementation
•  Why	 not	 MPI_Win_flush?	

–  SJll	 need	 to	 lock	 to	 start	 passive	 epoch;	 either	
•  Redundant	 lock	 /	 unlock	 with	 MPI_LOCK_EXCLUSIVE	
•  Global	 (whole	 run)	 lock	 /	 unlock	 with	 MPI_LOCK_SHARED	 (slow!)	

•  Why	 not	 MPI_Raccumulate	 for	 “async”	 update?	
–  SJll	 need	 to	 check	 on	 it;	 again	 either:	

•  Redundant	 lock	 /	 unlock	 with	 MPI_LOCK_EXCLUSIVE	
•  Slow	 global	 epoch	 lock	 /	 unlock	 with	 MPI_LOCK_SHARED	

•  How	 about	 faster	 memory?	
–  Already	 use	 MPI_Alloc_mem	
–  Maybe	 MPI_Win_allocate?	

•  Good	 quesJon!	 Trying	 that	
•  How	 about	 window	 op-miza-ons?	

–  Say,	 using	 accumulate_ops	 =	 same_op?	
•  Trying	 that	 too!	

-‐	 37	 -‐	

Thank you.

-‐	 38	 -‐	

